Step of Proof: decidable-filter
11,40
postcript
pdf
Inference at
*
2
3
I
of proof for Lemma
decidable-filter
:
1.
T
: Type
2.
T
List
3.
u
:
T
4.
v
:
T
List
5.
P
:({
x
:
T
| (
x
v
)}
).
5.
(
x
v
. Dec(
P
(
x
)))
(
L'
:
T
List. (
L'
v
& (
x
:
T
. (
x
L'
)
((
x
v
) &
P
(
x
)))))
6.
P
: {
x
:
T
| (
x
[
u
/
v
])}
7.
x
[
u
/
v
]. Dec(
P
(
x
))
8.
L'
:
T
List. (
L'
v
& (
x
:
T
. (
x
L'
)
((
x
v
) &
P
(
x
))))
L'
:
T
List. (
L'
[
u
/
v
] & (
x
:
T
. (
x
L'
)
((
x
[
u
/
v
]) &
P
(
x
))))
latex
by ((Unfold `l_all` (-2))
CollapseTHEN (((InstHyp[
u
] (-2))
CollapseTHENA (Auto
))
))
latex
Co
1
: .....antecedent..... NILNIL
Co1:
7.
x
:
T
. (
x
[
u
/
v
])
Dec(
P
(
x
))
Co1:
8.
L'
:
T
List. (
L'
v
& (
x
:
T
. (
x
L'
)
((
x
v
) &
P
(
x
))))
Co1:
(
u
[
u
/
v
])
Co
2
:
Co2:
7.
x
:
T
. (
x
[
u
/
v
])
Dec(
P
(
x
))
Co2:
8.
L'
:
T
List. (
L'
v
& (
x
:
T
. (
x
L'
)
((
x
v
) &
P
(
x
))))
Co2:
9. Dec(
P
(
u
))
Co2:
L'
:
T
List. (
L'
[
u
/
v
] & (
x
:
T
. (
x
L'
)
((
x
[
u
/
v
]) &
P
(
x
))))
Co
.
Definitions
x
L
.
P
(
x
)
,
P
Q
,
Dec(
P
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
type
List
,
Type
,
(
x
l
)
Lemmas
l
member
wf
origin